

Home Search Collections Journals About Contact us My IOPscience

Effective vertex of the holon-holon interaction in the t-J model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1992 J. Phys.: Condens. Matter 4 L67 (http://iopscience.iop.org/0953-8984/4/4/002)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 10/05/2010 at 23:59

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 4 (1992) L67-L70. Printed in the UK

LETTER TO THE EDITOR

Effective vertex of the holon-holon interaction in the *t*--*J* model

L Bryja, E Kolley and W Kolley Sektion Physik, Universität Leipzig, Linnéstrasse 5, 0-7010 Leipzig,

Received 28 October 1991

Federal Republic of Germany

Abstract. Within the slave-boson approach to the $\vdash J$ model of high- T_c superconductivity, the vertex of the spinon-mediated holon-holon interaction is exploited in detail to find out the critical temperature of holon pairing.

The high- T_c superconductivity of copper oxide materials can be discussed as a twodimensional (2D) pair condensation of bosonic holons [1,2] mediated by paired fermionic spinons [3]. The *t*-J model in the slave-boson version [3-6] is subjected to a mean-field (MF) approximation for the spinons. Fluctuations are included [3, 6] in this scheme via the holon-spinon interaction leading to an effective holon-holon interaction (attraction) in the perturbative parameter range t < J, whereby the origin of the *t*-J model from the Hubbard model is ignored. The resulting generalized MF equations for coupled spinon (s) and holon (h) order parameters are:

(i) Spinon system

$$\Delta_k^{\rm s} = \frac{J}{N} \sum_{k'} \eta_{k-k'} \Delta_{k'}^{\rm s} \Theta_{k'}^{\rm s}(T) \tag{1a}$$

$$p_{k} = -\frac{1}{N} \sum_{k'} \eta_{k-k'} \varepsilon_{k'}^{s} \Theta_{k'}^{s}(T)$$
^(1b)

$$\frac{\delta}{2} = \frac{1}{N} \sum_{k} \varepsilon_{k}^{s} \Theta_{k}^{s}(T)$$
(1c)

(ii) Holon system

$$\Delta_{k}^{h} = -\frac{1}{N} \sum_{k'} U_{kk'} \Delta_{k'}^{h} \Theta_{k'}^{h}(T)$$
^(1d)

$$q_{k} = -\frac{1}{N} \sum_{k'} \eta_{k-k'} \varepsilon_{k'}^{\mathrm{h}} \Theta_{k'}^{\mathrm{h}}(T)$$

$$(1e)$$

$$\delta = \frac{1}{N} \sum_{k} \varepsilon_{k}^{h} \Theta_{k}^{h}(T) - \frac{1}{2}$$
(1f)

L67

Figure 1. The dependence of the spinon-pairing amplitude, Δ^s , and the chemical potential, μ , of the separate spinon system on temperature, *T*, in units of the parameter *J* at a doping concentration of $\delta = 0.05$. The dash-dot curve refers to the chemical potential in the unpaired case.

Figure 2. The dependence of the holon-pairing amplitude, Δ^h , and the chemical potential, λ , of the separate holon system on temperature, T, in units of the parameter Λ at a doping concentration of $\delta = 0.05$ (solid curve) and $\delta = 0.10$ (dashed curve). For the dash-dot curves, see figure 1.

with $\Theta_k^s(T) = (1/2E_k^s) \tanh(E_k^s/2T)$ and $\Theta_k^h(T) = (1/2E_k^h) \coth(E_k^h/2T)$. The vertex of the holon-holon interaction in (1d) is found to be

$$U_{kk'} = \frac{t^2}{N} \sum_{q} F_{kk'q} \frac{E^{s}_{q+k} + E^{s}_{q+k'}}{(\varepsilon^{h}_{k'} - \varepsilon^{h}_{k})^2 - (E^{s}_{q+k} + E^{s}_{q+k'})^2} (1 - f^{s}_{q+k} - f^{s}_{q+k'})$$
(2)

where

$$F_{kk'q} = (1/4E^{s}_{q+k}E^{s}_{q+k'})[\eta^{2}_{q}\Delta^{s}_{q+k}(\Delta^{s}_{q+k'})^{*} + \eta^{2}_{q+k+k'}\Delta^{s}_{q+k'}(\Delta^{s}_{q+k})^{*} + 2\eta_{q}\eta_{q+k+k'}(E^{s}_{q+k}E^{s}_{q+k'}) - \varepsilon^{s}_{q+k}\varepsilon^{s}_{q+k'})].$$

 $\Delta_k^{s(b)}$ and $p_k(q_k)$ denote the spinon (holon) pairing and hopping amplitudes (for definitions see reference [6]; δ is the holon (doping) concentration. The excitation spectrum $E_k^{s(h)} = +\sqrt{(\varepsilon_k^{s(h)})^2 \pm |\Delta_k^{s(h)}|^2}$ involves the spinon (holon) energy dispersion,

$$\varepsilon_k^{\rm s} = \mu - J(1-\delta) - (tq_k + Jp_k/2)(\varepsilon_k^{\rm h} = \lambda - 2tp_k)$$

with $\mu(\lambda)$ as the chemical potential. The structure factor is $\eta_k = 2(\cos k_x + \cos k_y)$ in units of the lattice constant (2D square lattice); f_k^s is the Fermi function, $f_k^s = (\frac{1}{2}) - E_k^s \Theta_k^s(T)$. N and T mean the number of lattice sites and the temperature. In deducing the MF equations (1), various symmetries of Δ_k^s and $p_k(q_k)$ can be taken into account. The symmetry of Δ_k^h is determined by $U_{kk'}$. At $U_{kk'} \equiv 0$, the MF equations (1) agree with those in [5], and at s-wave symmetric Δ_k^s , p_k and q_k with those in [6].

To study the explicit coupling of the MF equations (1) via $U_{kk'}$, first the two subsystems are investigated in the low doping region. The hopping amplitudes, p_k and q_k , are assumed to be negligibly small. Consequently, there is no implicit coupling through $\varepsilon_k^{s,h}$, and the fermionic spinon system (1*a*-*c*) can be treated separately.

(i) Spinon system (1a-c). In analogy to estimations in [5], the RVB order parameter Δ_k tends to zero at the critical temperature, $T_c^s = T^{RVB} = (J\delta/2)/\ln((1+\delta)/(1-\delta))$. Assuming s-wave symmetry, the doping dependence of $\Delta_k^s = \Delta^s \eta_k$ at zero temperature is given approximately by $\Delta^s(T=0) = (2J/\pi^2)\sqrt{1-\delta^2}$. Note that at zero doping

Figure 3. The critical holon temperature T_c^h in the coupled holon-spinon system (solid curve) and the RVB temperature, T^{RVB} , of the separate spinon system (dashed curve) against the doping concentration, δ , for t/J = 0.52.

 $T^{\text{RVB}}(\Delta^{\text{s}}(T=0))$ has the maximum value of $J/4(2J/\pi^2)$. In figure 1 the temperature dependence of Δ^{s} and of μ is plotted ($\delta = 0.05$). $\Delta^{\text{s}}(T)$ shows a BCS-like behaviour.

(ii) Holon system (1d-f). To separate the holon system, $U_{kk'}$ is replaced by a constant attractive pseudopotential $-\Lambda(\Lambda > 0)$; $\Delta_k^h \equiv \Delta^h$ also becomes k independent. One then obtains MF equations which refer to those in [2]. The critical temperature, defined by $\Delta^h \rightarrow 0$, is now given by $T_c^h = \Lambda(1/2 + \delta)/\ln((1 + \delta)/\delta)$, and the zero temperature doping dependence of Δ^h is found to be $\Delta^h(T = 0) = \Lambda\sqrt{\delta(\delta + 1)}$. These equations are identical with those in the case of $n_0 = \delta$ in [2]. In figure 2 the temperature dependence of Δ^h and of λ is represented for $\delta = 0.05$ and 0.10; $\Delta^h(T)$ also shows a BCS-like behaviour. In contrast to $\Delta^s(T)$ in figure 1, $\Delta^h(T)$ now depends sensitively on δ .

(iii) Coupled systems (1a-f). The coupling between the two subsystems in (1) is mainly caused by the complicated vertex $U_{kk'}$ in (2). Assuming an s-wave symmetric paired-holon state, the holon pair condensation is favoured at $k \approx 0$ [3]. The temperature- and doping-dependent diagonal term of $U_{kk'}$ in (2) at $k = k' \approx 0$, called $-\Lambda_{T,\delta}(\Lambda_{T,\delta} \ge 0)$, now plays the role of the pseudopotential, $-\Lambda$. The holon-holon interaction is determined by the spinon state, so that

$$\Lambda_{T,\delta} = \frac{t^2}{2N} \sum_{q} \eta_q^2 \frac{|\Delta_q^s|^2}{(E_q^s)^3} \tanh\left(\frac{E_q^s}{2T}\right).$$
(3)

Obviously, $\Lambda_{T,\delta}$ vanishes in the case of unpaired spinons ($\Delta_k^s \equiv 0$). An s-wave symmetric paired-spinon state ($\Delta_q^s = \Delta^s \eta_q$) and a gapless spinon excitation spectrum ($E_q^s = E^s |\eta_q|$) [7] yield

$$\Lambda_{T,\delta} = 2g_0 (\Delta^s / E^s)^2 \tag{4}$$

where $g_0 = 2t^2/J$. Using the approximations $p_k \approx 0$ and $q_k \approx \delta \eta_k$, one gets $E^s = +\sqrt{t^2\delta^2 + (\Delta^s)^2}$ [7]. The dimensionless quantity $(\Delta^s/E^s)^2$ in (4) lies between 0 and 1 in dependence on T and δ . So the strength of $\Lambda_{T,\delta}$ is scaled by the strength of the coupling constant, g_0 (see [8]). The t-J model in the small (J/t) limit corresponds to the Hubbard model in the large (U/t) limit, where $J = (4t^2/U)$ [9]. In that strong-coupling limit, $\Lambda_{T,\delta}$ grows indefinitely with $(4t^2/J) = U$ as pointed out in references [10, 11]. This unphysical fact gives rise to a renormalization of $g_0 \sim t^2/J(\sim U)$ to $g_0 \sim J(\sim t^2/U)$ [8]. A suitable renormalization procedure due to vertex corrections is still outstanding. For that reason, and in expectation of the decrease of the vertex corrections at t < J [10], the ratio of the

parameters is chosen here as (t/J) = 0.52. From equation (4) T_c^h is evaluated numerically as a function of δ in the coupled-MF system (1). The curve is shown in figure 3. T_c^h is restricted to the doping range $0, \ldots, \delta, \ldots, 0.39$ and can be identified with the superconducting transition temperature. To illustrate the requirement of a background of paired spinons, T^{RVB} for the separate spinon system is also plotted in figure 3. The curvature of $T_c^h(\delta)$ and $T^{\text{RVB}}(\delta)$ shows a remarkable similarity with that of $T_s(\delta)$ and $T_m(\delta)$ of calculations in the p-d model in [12].

Finally one can say that the 2D pairing mechanism for charged holons caused by the exchange of uncharged spinons is formally described by the effective vertex of the holon-holon interaction. The critical temperatures are defined based on pairing order parameters. The use of the effective vertex leads to a link between the strong-coupling and the weak-coupling limits [10]. This problem seems to be independent of the scheme (either slave-boson [3-6] or slave-fermion [6, 13] version).

One of the authors (LB) is grateful to the Konrad-Adenauer-Stiftung eV for financial support.

References

- [1] Rice M J and Wang Y R 1988 Phys. Rev. B 37 5893
- [2] Wheatley J M, Hsu T C and Anderson P W 1988 Phys. Rev. B 37 5897
- [3] Wang Y R 1989 Phys. Rev. B 39 2698
- [4] Ruckenstein A E, Hirschfeld P J and Appel J 1987 Phys. Rev. B 36 857 Kotliar G and Liu J 1988 Phys. Rev. B 38 5142
- [5] Suzumura Y, Hasegawa Y and Fukuyama H 1988 J. Phys. Soc. Japan 57 2768
- [6] Kolley E and Kolley W 1990 Phys. Lett. 149A 233
- [7] Zou Z and Anderson P W 1988 Phys. Rev. B 37 627
- [8] Shraiman B I and Siggia E D 1989 Phys. Rev. B 40 9162
- [9] Gros C, Joynt R and Rice T M 1987 Phys. Rev. B 36 381
- [10] Frenkel D M and Hanke W 1990 Phys. Rev. B 42 6711
- [11] Gan J, Andrei N and Coleman P 1991 J. Phys.: Condens. Matter 3 3537
- [12] Yang Z and Kong F 1991 Phys. Lett. 154A 305
- [13] Yoshioka D 1989 J. Phys. Soc. Japan 58 1516
 Ivanov T 1990 Phys. Lett. 145A 201
 Liu Y, Dong J and Gong C 1991 J. Phys.: Condens. Matter 3 4893